
Rigorous description of exchange–correlation energy of many-electron systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 385202

(http://iopscience.iop.org/0953-8984/20/38/385202)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 15:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 385202 (6pp) doi:10.1088/0953-8984/20/38/385202

Rigorous description of
exchange–correlation energy of
many-electron systems
Qing-Wei Wang1, Hong-Yi Xie2 and Yu-Liang Liu2

1 Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of
China
2 Department of Physics, Renmin University of China, Beijing 100872,
People’s Republic of China

E-mail: ylliu@ruc.edu.cn

Received 18 May 2008, in final form 31 July 2008
Published 21 August 2008
Online at stacks.iop.org/JPhysCM/20/385202

Abstract
With the eigenfunctional theory, we study a general interacting electron system, and give a
rigorous expression of its ground state energy, which is composed of two parts: one part is
contributed by the non-interacting electrons, and the other one is represented by the correlation
functions that are controlled by the electron correlation. Moreover, according to the rigorous
expression of the ground state energy, an effective scheme beyond the local density
approximation of the density functional theory is proposed. As a simple example for a
spin-1/2 XXZ chain, under the linear approximation in solving the equation of the phase field,
the ground state energy obtained by the present scheme is quite close to that of the
Bethe ansatz.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electron correlation plays an important role in the
description of quantum many-electron systems. According
to the electron correlation strength, the systems are
approximately divided into two categories: one is called
weakly correlated electron systems, and the other one is
called strongly correlated electron systems [1]. The former
can be approximately described by the usual quasiparticle
schemes [2, 3], while the latter has to be represented by new
schemes beyond the usual quasiparticle description.

The Hohenberg–Kohn–Sham (HKS) density functional
theory [4, 5] opens a new era in description of the quantum
many-electron systems, and it and its generalizations [6]
are extensively applied in physics and chemistry. However,
the rigorous expression of the exchange–correlation energy
in the HKS density functional theory is unknown, and the
local density approximation (LDA) of the Kohn–Sham scheme
plays a central role in calculating the ground state energy
of the systems. In general, for the weakly correlated

systems, the result of the LDA is accurately in agreement
with experimental data, but for the strongly correlated
systems it is unreliable because of the strong electron
correlation.

In contrast to the Kohn–Sham scheme of the density
functional theory, we use the eigenfunctional theory to study a
general quantum many-electron system [7], and give a rigorous
expression of the ground state energy, especially the correlation
energy. Moreover, according to this rigorous form of the
ground state energy, the correlation energy part can be well
defined, and a more effective method beyond the LDA is
proposed.

This paper is arranged as follows. In section 2
we describe the general formalism of the eigenfunctional
theory for calculating the ground state energy of a quantum
many-electron system with the Coulomb interaction in three
dimensions. To show the effectiveness of our general method,
in section 3 we apply it to the spin- 1

2 XXZ chain to study its
ground state energy and the asymptotic behavior of the Green
function and the spin–spin correlation function. We conclude
in section 4 with some discussions.
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2. General formalism

The Hamiltonian of a quantum many-electron system can be
generally written down,

̂H = ̂H0 + e2

2

∫

d3x d3x ′V (x − x ′)ρ̂(x)ρ̂(x ′), (1)

where ̂H0 = ∑

σ

∫

d3x ̂ψ†
σ (x)(

p̂2

2m + U(x))̂ψσ (x) is the
Hamiltonian of the non-interacting electrons, ̂ψ†

σ (x) (̂ψσ (x))
are the creation (annihilation) operators of the electrons with
spin label σ at the coordinate x, ρ̂(x) = ∑

σ
̂ψ†
σ (x)̂ψσ(x) is

the density operator of the electrons, and U(x) is an external
potential. The last term represents the electron Coulomb
interaction, and it induces the electron correlation effect, which
makes the problem hard to treat. In the usual mean-field
theory [8, 9] the (effective) Coulomb interaction is treated
as a perturbation parameter, while in the density functional
theory it is incorporated into the exchange–correlation energy.
However, if the electron correlation is strong, the results
obtained by the mean-field theory and the LDA of the density
functional theory are unreliable, and the electron Coulomb
interaction has to be accurately treated.

With the eigenfunctional theory, the partition function of
the system reads [7]

Z =
∫

Dψ∗ DψDρDφe
i
h̄ S,

S =
∑

σ

∫

d3x dtψ∗
σ (x, t)̂M(x, t)ψσ (x, t)+ W [ρ, φ],

(2)

where W [ρ, φ] = ∫

d3x dt φ(x, t)ρ(x, t)− e2

2

∫

dt d3x d3x ′V
(x − x ′)ρ(x, t)ρ(x ′, t), ̂M(x, t) = ih̄∂t + μ − p̂2

2m − U(x)−
φ(x, t) is the electron propagator operator in the new Hilbert
space, andμ is the chemical potential. The Lagrange multiplier
field φ(x, t) is introduced to decouple the electron interaction;
in the meantime the original Hilbert space is mapped into a
new Hilbert space, in which the electrons are non-interacting,
and moving in a fluctuating potential produced by φ(x, t).

In general, the eigenequation of the electron propagator
operator reads [10, 7]

̂M(x, t)�σ kω(x, t; [φ]) = Eσ kω[φ]�σ kω(x, t; [φ]), (3)

and the eigenvalue can be obtained by the Hellmann–Feynman
theorem,

Eσ kω[φ] = h̄ω − Ek − 	σ k[φ]

	σ k[φ] =
∫ 1

0
dλ

∫

dt d3x φ(x, t)|�σ kω(x, t; [λφ])|2

where ω is the frequency, 	σ k[φ] is the self-energy of the
electrons in the new Hilbert space, and Ek is the eigenvalue
of the non-interacting Hamiltonian of the electrons,

H0ψσ k(x) = (Ek + μ)ψσ k(x)

where H0 = p̂2

2m +U(x), and k labels a set of quantum numbers
representing the states of the non-interacting electrons.

According to the expression of the eigenvalue Eσ kω[φ], the
eigenfunctional can be generally written down,

�σ kω(x, t; [φ]) = 1√
T
ψσ k(x)e

−i(ω−	σk [φ])t eQσk (x,t;[φ]) (4)

where T → ∞ is the timescale of the system, and the phase
field Qσ k(x, t; [φ]) satisfies the eikonal-like equation with the
condition Qσ k(x, t; [φ = 0]) = 0,

φ(x, t) =
(

ih̄∂t − p̂2

2m
− 1

m
[ p̂ ln(ψσ k(x))] · p̂

)

× Qσ k(x, t; [φ])− [ p̂Qσ k(x, t; [φ])]2

2m
. (5)

For the homogeneous case, this equation can be easily solved
after neglecting the non-linear term, which in general is a
small quantity3. It is worth noting that the difference between
the eigenfunctional �σ kω(x, t; [φ]) of the electrons in the
new Hilbert space and the wavefunction ψσ k(x) of the non-
interacting electrons is the functional eQσk (x,t;[φ]) but with a
pure phase factor e−i(ω−	σk [φ])t , thus the physical meaning of
the phase field Qσ k(x, t; [φ]) is clear: the electron correlation
effect can be completely represented by the phase field; i.e., the
phase field is a correlation parameter of the electrons.

In terms of the eigenfunctionals �σ kω(x, t; [φ]), the
second quantization representation of the electrons in the new
Hilbert space can be written down,

̂ψσ (x, t) =
∑

kω

�σ kω(x, t; [φ])̂cσ kω

̂ψ†
σ (x, t) =

∑

kω

�∗
σ kω(x, t; [φ])̂c†

σ kω,
(6)

where ĉσ kω (̂c†
σ kω) is the annihilation (creation) operator of

the electrons with the spin index and the quantum number k
and ω. Using the orthogonality and the completeness of the
eigenfunctionals �σ kω(x, t; [φ]), it can be easily proved that
the above electron operators satisfy the standard electron anti-
commutation relations. These expressions play a central role in
calculating the ground state energy and a variety of correlation
functions of the system.

After integrating out the electron fields, and using the
mathematical formula

Tr ln
(

̂A + ̂B
) = Tr ln

(

̂A
) + Tr

∫ 1

0
dλ ̂B

1
̂A + λ̂B

the partition function can be written down [9],

Z =
∫

DρDφe
i
h̄ S[ρ,φ],

S[ρ, φ] = −i Tr ln
(

̂M0
) + W [ρ, φ]

+ i
∑

σ

∫ 1

0
dλ

∫

dt d3x φ(x, t)Gσ (x, t; x, t; [λφ]),

(7)

3 This can be easily understood for the lattice case, where the non-linear term
originates from the phase difference between the nearest-neighbor sites. In
general, the phase field produced by the quantum fluctuation of the Lagrange
multiplier field is a smooth function, thus the non-linear term is a small
quantity.
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where ̂M0 = ih̄∂t + μ − p̂2

2m − U(x) is the non-interacting
electron propagator operator. The electron Green function
Gσ (x, t; x ′, t ′; [φ]) in the new Hilbert space can be written
down,

Gσ (x, t; x ′, t ′; [φ]) =
∑

kω

�σ kω(x, t; [φ])�∗
σ kω(x

′, t ′; [φ])
h̄ω − Ek −	σ k[φ]

and the electron Green function in the original Hilbert
space is Gσ (x, t; x ′, t ′) = 〈Gσ (x, t; x ′, t ′; [φ])〉ρφ , where

〈A[φ]〉ρφ = 1
Z

∫

DρDφe
i
h̄ S[ρ,φ] A[φ]. The action S[ρ, φ] is

used to calculate the functional average over the auxiliary fields
φ(x, t) and ρ(x, t).

According to the expressions of the electron operators, the
ground state energy Eg = 〈H (t)〉 of the system reads

Eg = K0 + VHF + δK + EHc + EFc, (8)

where K0 = 2
∑

k nk(Ek + μ) is the kinetic energy of the
non-interacting electrons, and nk = θ(−Ek) is the occupation
number of the kth state of the non-interacting electrons. The
term VHF is the usual Hartree–Fock potential energy [11],

VHF = e2

2

∫

d3x d3x ′V (x − x ′)ρ0(x)ρ0(x
′)

− e2

2

∑

σ kk′
nknk′

∫

d3x d3x ′ V (x − x ′)

× ψ∗
σ k(x)ψσ k′(x)ψ∗

σ k′ (x ′)ψσ k(x
′), (9)

where ρ0(x) = ∑

σ k nk |ψσ k(x)|2 is the density of the non-
interacting electrons. The first two terms in the expression of
the ground state energy are similar to those in the LDA of the
density functional theory, which can be rigorously represented
by the single-particle wavefunctions.

The term δK is a modification of the kinetic energy of the
electrons by the Coulomb interaction [12],

δK =
∑

σ k

∫

d3x ρσ k(x)gσ k(x, [ρ0]), (10)

where ρσ k(x) = nk |ψσ k(x)|2, and gσ k(x, [ρ0]) =
〈|eQσk (x,t;[φ])|2(ih̄∂t Qσ k(x, t; [φ]) − φ(x, t))〉ρφ is the func-
tional of the density ρ0(x), and independent of the time co-
ordinate t because of the time translation symmetry of the
system. For a homogeneous electron system, the function
gσ k(x, [ρ0]) = gσ k[ρ0] is equivalent to the self-energy under
the random-phase approximation, and it is a functional of the
density ρ0(x). Thus, the term δK can be treated approximately
under the LDA.

The correlation energies EHc and EFc can be written
down [13–15],

EHc = e2

2

∫

d3x d3x ′ V (x − x ′)ρ(x, x ′),

EFc = −e2

2

∫

d3x d3x ′ V (x − x ′)
(x, x ′),

(11)

where the functions ρ(x, x ′) and 
(x, x ′) are defined as

ρ(x, x ′) =
∑

σβkk′
nknk′ |ψσ k(x)|2|ψβk(x

′)|2

× 〈|eQσk (x,t;[φ])|2|eQβk (x′ ,t;[φ])|2 − 1〉ρφ

(x, x ′) =

∑

σ kk′
nknk′ψ∗

σ k(x)ψσ k′(x)ψ∗
σ k′(x ′)ψσ k(x

′)

× 〈exp{Q∗
σ k(x, t; [φ])+ Qσ k(x

′, t; [φ])
+ Q∗

σ k′ (x ′, t; [φ])+ Qσ k′ (x, t; [φ])} − 1〉ρφ.
Obviously, EHc is the Hartree-like correlation energy, while
EFc represents the Fock-like correlation energy. The former
shows the local behavior, and the latter has the non-local
property. It could be demonstrated that the main errors of
the LDA of the density functional theory originate from the
correlation energy EHc and EFc terms.

For a homogeneous interacting electron system, accord-
ing to the experience in studying the one-dimensional interact-
ing electron systems4, the electron correlation strength is con-
trolled by the imaginary part of the phase field Qσ k(x, t; [φ]),
and it can be shown that 〈|eQσk (x,t;[φ])|2|eQβk (x′ ,t;[φ])|2〉ρφ =
eFσβkk′ (x−x′ ;[ρ0]), where the function Fσβkk′ (x − x ′; [ρ0]) is a
small quantity, thus it is reasonable to take the approxima-
tion5eF 	 1 + F . Therefore, the function ρ(x, x ′) can be
approximately represented by the density function,

ρ(x, x ′) 	
∑

σβkk′
Fσβkk′ (x − x ′; [ρ0])ρσ k(x)ρβk′(x ′), (12)

where Fσβkk′ (x − x ′; [ρ0]) is the functional of the non-
interacting electron density ρ0(x). Thus, the correlation energy
EHc can be treated approximately under the LDA.

It can be shown that for the homogeneous case
〈exp{Q∗

σ k(x, t; [φ]) + Qσ k(x ′, t; [φ]) + Q∗
σ k′(x ′, t; [φ]) +

Q∗
σ k′ (x, t; [φ])}〉ρφ = ePσkk′ (x−x′ ;[ρ0]), while the function

Pσ kk′ (x − x ′; [ρ0]) is not a small quantity for the systems
with strong electron correlation. For example, for
a one-dimensional interacting electron gas, the function
ePσkk′ (x−x′ ;[ρ0]) has a power-law asymptotic behavior [17],

eP1D
σkk′ (x−x′ ;[ρ0]) ∼ 1

|x − x ′|γ (13)

where γ > 1 is a dimensionless coupling constant which
depends upon the electron interaction strength and the Fermi
velocity. In this case, the function 
(x, x ′) shows completely
different behavior from that of the function ρ(x, x ′), and
the correlation energy EFc cannot be treated approximately
under the LDA. In general, it is expected that the correlation
energy EFc is important for the systems with strong electron
correlation, thus a method beyond the LDA is needed.

The above expression of the ground state energy is
obviously different from that of the density functional theory
in the LDA (Kohn–Sham scheme), where the ground state
energy is represented by the quantity of the non-interacting
electrons. The ground state energy in equation (8) is composed

4 In the usual bosonization method, the phase field is a pure imaginary
function.
5 According to the normalization of the eigenfunctional, we have the relation:
〈|eQσk (x,t)|2〉ρφ = 1.
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of two parts: one part corresponds to the non-interacting
electrons, and the other one is represented by the correlation
functions, that are controlled by the electron correlation, which
describes the quantum many-electron effect. In principle, the
expression of the ground state energy is independent of the
choice of the Hamiltonian ̂H0 of the non-interacting electrons.
A different choice of the Hamiltonian ̂H0 can give a different
non-interacting part, while for the correlation part it will only
change the action S[ρ, φ] and the wavefunction ψσ k(x) of the
non-interacting electrons.

The method described above is a general approach for
calculating the correlation energy in the ground state of
quantum many-electron systems, and it is valid in any spacial
dimensions. In the following we will apply this general method
to one simple but nontrivial example: the one-dimensional
spin- 1

2 XXZ model.

3. One-dimensional XXZ model

The Hamiltonian of a spin- 1
2 XXZ chain with nearest-neighbor

(n.n.) interaction is

HXXZ = −J⊥
∑

〈i j〉

[

Sx
i Sx

j + Sy
i Sy

j

]

+ Jz

∑

〈i j〉
Sz

i Sz
j .

We take J⊥ as the unit of energy, i.e. J⊥ = 1, and define the
anisotropic parameter � ≡ Jz/J⊥. Then, the Hamiltonian
after the Jordan–Wigner (JW) transformation reads

HXXZ = − 1
2

∑

i j

̂f †
i γi j ̂f j −�

∑

i

n̂i + 1
4�L

+ 1
2�

∑

i j

n̂iγi j n̂ j , (14)

where ̂f †
i (

̂fi ) is the creation (annihilation) operator of the
spinless fermions, n̂i = ̂f †

i
̂fi ,

γi j =
{

1 if |i − j | = 1

0 otherwise,

and L is the total number of lattice sites.
The eigenfunctional of equation (3) can be written as

�kω(xi , t; [φ]) = 1√
T L

eikxi −it (ω−	k [φ])eQk (xi ,t;[φ]), (15)

where T → ∞ is the timescale of the system, L → ∞ the
total number of lattice sites, and the phase field Qk(xi , t; [φ])
satisfies the equation

i∂t Qk(xi , t; [φ])− φi(t)+ εk

= − 1
2

∑

j

e−ikxi −Qk (xi ,t;[φ])γi j e
ikx j +Qk (x j ,t;[φ]), (16)

where εk = − cos k. It is worthwhile to note that, in calculating
the ground state energy, this functional should be normalized
to ensure the conservation of the total particle number.

The auxiliary field φ can be separated into two parts,
a mean-field part φc

i and a quantum fluctuation part ηi (t):
φi(t) = φc

i + ηi(t). The former should be obtained self-
consistently, which generally gives a renormalization of the
chemical potential and possibly a change of the energy band.

It can be shown that in the present model the mean-field effect
would lead to a renormalization of the dispersion relation:
εk → εk = −J ∗ cos k, where J ∗ = 1 + �/π . The latter part
would lead to a phase field Qk(xi , t; [η]), which is usually a
small quantity (see footnote 3) and hence can be approximated
by eQk ≈ 1 + Qk . Then the solution of equation (16) reads

Qk(xi , t; [η]) = 1

T L

∑

q�

eiqxi −i�t η(q,�)

�+ εk − εk+q
, (17)

where η(q,�) = ∫

dt
∑

i e−ikxi +i�tηi (t) are Fourier
components of the fluctuation field ηi (t). Using this expression
for the phase field, and integrating out the ρ field, the effective
action for η reads

Seff[η] ≈ const.+ 1

2�

1

T L

∑

q�

1

γ ∗(q,�)
|η(q,�)|2, (18)

where |η(q,�)|2 ≡ η(q,�)η(−q,−�), and

γ ∗(q,�) = γ (q)

1 −�γ (q)�c(q,�)
, (19)

where γ (q) = ∑

j γi je−iq(xi −x j ) = 2 cos(q), and �c(q,�) is
the Lindhard function in the presence of the classical field φc:

�c(q,�) = 1

L

∑

k

f (εk)− f (εk+q )

εk − εk+q −�
,

where f (ε) is the Fermi–Dirac distribution function.
In the following we will first calculate the ground state

energy and then evaluate the correlation exponents of the Green
function and the spin–spin correlation function.

3.1. Ground state energy

The ground state energy per site Eg ≡ 〈HXXZ〉/L can be
written as Eg = EHF + Ec, where EHF is the energy in the
Hartree–Fock approximation and Ec the correlation energy.

The Hartree–Fock term EHF = K0 + VHF −�/4, where

K0 = − 1

L

∑

k

e−ika f (εk), (20)

VHF = �

L2

∑

k1k2

f (εk1 ) f (εk2 )

− �

L2

∑

k1k2

e−i(k1−k2)a f (εk1 ) f (εk2 ). (21)

The correlation energy Ec = δK + EHc + EFc. The
modification of the kinetic energy due to the short-range
interaction reads

δK = − 1

L

∑

k

e−ika f (εk)
[

eFk [�] − 1
]

, (22)

where a is the lattice constant and

Fk[�] = i
�

T L

∑

q,�

γ ∗(q,�)
(

�+ εk − εk+q
)2

[

e−iqa − 1
]

. (23)

4
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Figure 1. Dependence of the ground state energy per site on �,
which is numerically evaluated in the eigenfunctional theory (EFT),
in comparison with the Bethe ansatz (BA) solution and the
Hartree–Fock (HF) approximation. The inset shows the two relative
errors RHF and REFT, which are defined in the text.

The Hartree-like correlation energy is

EHc = �

L2

∑

k1k2

f (εk1 ) f (εk2 )
[

eRk1 k2 +Fk1 k2 − 1
]

, (24)

where

Rk1k2 = i
�

T L

∑

q,�

γ ∗(q,�)
[

2 cos(qa)
]

(

εk1 − εk1+q +�
) (

εk2 − εk2−q −�
) ,

(25)

Fk1k2 = i
�

T L

∑

q,�

γ ∗(q,�)
[

2 cos(qa)
]

(

�+ εk1 − εk1+q
) (

�+ εk2 − εk2+q
) .

(26)
The Fock-like interaction energy is

EFc = − �

L2

∑

k1k2

e−i(k1−k2)a f (εk1 ) f (εk2 )

×
[

eFk1 [�]+F∗
k2

[�]+Rex
k1 k2

+F ex
k1 k2 − 1

]

, (27)

where

Rex
k1k2

= i
�

T L

∑

q,�

[

2 exp(iqa)
]

γ ∗(q,�)
(

εk1 − εk1+q +�
) (

εk2 − εk2−q −�
) ,

(28)

Fex
k1k2

= i
�

T L

∑

q,�

2γ ∗(q,�)
(

�+ εk1 − εk1+q
) (

�+ εk2 − εk2+q
) .

(29)
It is well known that the one-dimensional XXZ model can

be solved exactly by the Bethe ansatz (BA) [18, 19], which
gives the ground state energy for 0 � � � 1 as

EBA
g (�) = cos λ

4
− sinλ

λ
Y (λ),

Y (λ) =
∫ ∞

−∞
dx

λ sin λ

2[cosh(πx)][cosh(2λx)− cos λ] ,

where λ ≡ arccos�. This solution gives an exact expression
of the correlation energy: EBA

c ≡ EBA
g − EHF.

The numerical evaluation of the ground state energy per
site evaluated in our eigenfunctional (EFT) scheme is plotted in
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Δ

Figure 2. Dependence of δK , EHc and EFc on �. The inset shows
the total correlation energy Ec = δK + EHc + EFc, in comparison
with the exact one: EBA

c = EBA
g − EHF.

figure 1, in comparison with the Bethe ansatz solution and the
Hartree–Fock approximation. The modification of the kinetic
energy δK , the Hartree-like correlation energy EHc, the Fock-
like correlation energy EFc and the total correlation energy Ec

are plotted in figure 2. We see that the EFT result is quite
close to the exact solution, reflecting the fact that correlation
effects can be captured quite effectively in our EFT scheme.
To see more clearly, we also plot the two relative errors:
RHF ≡ |EHF − EBA

g |/|EBA
g | and REFT ≡ |Eg − EBA

g |/|EBA
g |.

One can see that REFT is smaller than RHF by one order or
even more.

3.2. Correlation exponent

In the same formalism one can also study the asymptotic
behavior of the correlation functions. It is straightforward
to show that the fermion’s Green function and the transverse
spin–spin correlation function all have power-law behavior, the
exponents of which depend on the coupling constant� and can
be evaluated quite precisely in the EFT formalism.

We are interested in the long-range behavior of the
following two kinds of equal-time correlation function:

Gi j(t, t) = 〈 f †
j (t) fi (t)〉,

〈S−
i (t)S

+
j (t)〉 = 〈 fi (t) f †

j (t
′)e−i

∑

l

∫

dt1nl(t1)Vi j (xl ,t1;t,t ′)〉,

where Vi j(xl, t1; t, t ′) = π[�(xi − xl)δ(t1 − t) − �(x j −
xl)δ(t1 − t ′)].

In the limit of |x | = |xi − x j | → ∞, these two correlation
functions have power-law behavior:

Gi j(t, t) ∼ 1

|xi − x j |α , (30)

〈S−
i (t)S

+
j (t)〉 ∼ 1

|x − x ′|ν , (31)

where α = (g + 1/g)/2, ν = 1/(2g), and

g =
√

1 −�/π

1 + 3�/π
. (32)
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 B.A.

 B.Z.

 EFT

Δ

ν

 B.A.

 B.Z.

 EFT

α

Δ

Figure 3. Dependence of the correlation exponents α and ν on � in
the eigenfunctional formalism (EFT), in comparison with the Bethe
ansatz (BA) and bosonization (BZ) results.

The dependences of the correlation exponents α and ν are
plotted in figure 3 in comparison with the Bethe ansatz and
bosonization results.

4. Conclusion and discussion

Based upon the above discussions, a more effective method
for calculating the ground state energy Eg is that, by suitably
choosing the non-interacting Hamiltonian ̂H0, the terms K0

and VHF can be calculated with the usual LDA scheme, then
the terms �T , EHc and EFc can be calculated by the quantum
Monte Carlo method (QMCM) [20], where the action S[ρ, φ]
can be obtained by solving equation (5) of the phase field. By
more accurately treating the correlation energy Ec, the results
of the usual LDA will be heavily modified for the systems with
strong electron correlation.

On the other hand, for a suitable LDA, if the contribution
of the correlation energy Ec to the ground state energy is
small, this LDA is reliable. If its contribution is important,
the LDA will be unreliable and some extension or a new
approach is needed. The method suggested in this article is a
possible choice and it treats the two cases in a unified way. Of
course, corresponding to the local spin density approximation
(LSDA) [15, 16] of the density functional theory, it needs to
introduce the Lagrange multiplier fields φσ (x, t), in which
case there are four auxiliary fields φσ (x, t) and ρσ (x, t), while
the ground state energy has a similar expression to that in
equation (8).

In summary, with the eigenfunctional theory, we have
studied a general interacting electron system, and given a

rigorous expression of its ground state energy, which is
composed of two parts: one part is contributed by the
non-interacting electrons, and the other one is represented by
the correlation functions that are controlled by the electron
correlation. Moreover, according to the rigorous expression of
the ground state energy, an effective method beyond the LDA
may be the LDA plus the QMCM. The LDA is used to treat
the non-interacting electron part, while the correlation part is
generally treated by the QMCM. However, as a simple example
for a spin- 1

2 XXZ chain, without the QMCM and only under the
linear approximation in solving the equation of the phase field,
the ground state energy obtained by the present scheme is quite
close to that of the Bethe ansatz.
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